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COMMENT 

The superfluid phase transition in pulsars 

R J Green and A Love 
Department of Physics, Bedford College, University of London, Regent's Park, London, 
NW1 4NS, England 

Received 5 March 1980 

Abstract. Renormalisation group equations are derived from the Ginzburg-Landau free 
energy for p-wave paired neutron-star matter in the presence of large magnetic fields. The 
effect of fluctuations on the nature of the superfluid phase transition is discussed. 

Neutron star matter in the density range 1-8 x 1014 g cmP3 is believed to be a p-wave 
superfluid like 3He, but with a strong spin-orbit or tensor force producing pairing in a 
J = 2 state (Takatsuka 1972, Hoffberg et al 1970 and references therein). In an earlier 
paper (Bailin et al 1979) it was shown that the transition from the normal to the 
superfluid phase of neutron star matter is first-order when account is taken of fluctua- 
tions by renormalisation group methods. In the present paper we extend this work to 
the case where large magnetic fields such as arise in a pulsar are present. 

In the absence of magnetic fields, the order parameter for neutron star superfluidity 
is a complex 3 x 3  matrix Aii which, because of the J = 2  nature of the pairing, is 
traceless and symmetric. The Ginzburg-Landau bulk free energy density is of the form 

(1) 
(Sauls and Serene 1978), where r vanishes at the transition temperature in the mean 
field approximation. The most general bending (or strain) free energy consistent with 
symmetry under simultaneous spin and space rotations, and with phase symmetry, is 

(2) 

FB = r Tr(AA*) +iuITr A2I2+iv(Tr AA")' + i w  Tr A'A** 

Fs = CY-' aiAz, a p k i  + Eiik a 4 $ E i l m  &Apm 
apart from total divergences. 

Mermin 1973, Muzikar et a1 1979), 
A magnetic field adds two terms to the free energy functional (Ambegaokar and 

with yu/2 the magnetic moment of a neutron and Hi the components of the magnetic 
field. The coefficients in FH1 and FH2 have the values 
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where 7’ is the Ambegaokar-Mermin parameter, and 6; = 3&5. (For details of the 
form of the free energy functional used, see Jones et a1 1976.) Ambegaokar and 
Mermin (1973) obtained a value for the parameter 7’ from the splitting of the A and A 1  
phases of 3He. This value must be modified to allow for the ratio of the superfluid 
critical temperatures for neutron star matter and 3He and for the ratio of the neutron 
and 3He nuclear magnetic moments. We then find that FH1 and FH2 are comparable in 
magnitude for magnetic fields of the order of 1014 G. Estimates of the magnetic field in 
the interior of a neutron star range from 10” to 10I6 G (Beckenstein and Oron 1979 
and references therein). We therefore discuss both the case H > 1014 G when FH2 is 
dominant and H < 1014 G when FH1 is dominant. The critical region for the superfluid 
phase transition in neutron star matter has been estimated to be (Bailin et a1 1979) 

(Tc-  T) /T ,S  (8) 
though the value is very sensitive to T,/ TF. The value of equation (8) implies that when 
H >  1014 G the effect of the magnetic field will be important throughout the whole 
critical region, whereas when H < 1014 G it will only be important in a secondary critical 
region sufficiently close to T,. (It is coincidental that 1014 G is also the magnetic field at 
which FH1 and FH2 are comparable.) Throughout we shall assume a uniform magnetic 
field along the z-direction, or, in the case of d dimensions of space, along the 
d-direction. 

We consider first the case H > 1014 G. To find which components of the order 
parameter are relevant to the phase transition, we must diagonalise the quadratic terms 
in the bulk free energy with the inclusion of the magnetic field term FH2 and look for soft 
modes. The result is an order parameter which is a traceless symmetric 2 x 2 matrix. For 
renormalisation group calculations we have to work in d = 4 - E dimensions of space. 
With the gradient terms of equation (2), the order parameter in zero magnetic field is 
then a d x d matrix and, after taking account of FH2, we are left with a traceless 
symmetric (d  - 1) x ( d  - 1) matrix. We construct renormalisation group equations in 
the form given by ’t Hooft (1973), and the calculations are greatly simplified by the fact 
that we may use massless propagators ( r  = O ) .  In momentum space, the inverse 
propagator arising from equation (2) is then of the form 

Phtl, ( 4 )  = a k r  [(a - l)qlq, f (q2  f cq:)al,1 (9) 
where k,  i, 1 and j =  1,.  , . , d -1, and q 2 = q ? + .  . .+qi. By allowing c to be a free 
parameter, we obtain the most general inverse propagator consistent with the reduced 
symmetry in the presence of the magnetic field. In constructing the propagator we must 
symmetrise and subtract traces to avoid spurious contributions from other than J = 2 
intermediate states. Correct to linear order in 

A E ~ - 1 ,  (10) 
the propagator has the form 

where again k,  i, 1 and j = 1,.  . . , d - 1 and q 2  =q?+.  . . +q:. 
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An order-€' two-loop calculation gives the Callan-Symanzik functions (linearised 
about A = c = 0)  

and 

(S /2 ) -2@,  = -$A ($U' + $v2 + %w'+&w +Evw) (13) 

S / 2  = .rrd/2/(2n)dI'(d/2).  (14) 

where 

Since the coefficient of A in equation (12) is positive definite, A has an infrared stable 
fixed point at A = 0. Equation (13) then shows that at this fixed point c is a marginal 
variable. Accordingly we shall take a = 1 in subsequent calculations, but we must allow 
c to be non-zero. When a = 1, the propagator simplifies to a scalar meson propagator, 
and in general we may take Aij to be an n x n matrix with n different from d - 1. The 
only effect of c being non-zero is everywhere to replace the geometrical factor S / 2  by 
the geometrical factor 

s I S / 2  j" sind-2 OdO 
2 
-= 

B [ i ( d  - l), i] ,, (1 + c  cos2 07 '  

Absorbing a factor of S ' / S  into the definitions of U, U and w, the Callan-Symanzik 
functions for U ,  v and w are exactly as in equation (7) of Bailin et a1 (1979). Since we 
may regard the order parameter either as a 2 x 2 matrix or as a ( d  - 1) x ( d  - 1) matrix 
with d = 4 - E ,  it is not clear whether to take n = 2 or n = 3. However, in either case 
there are no infrared stable fixed points, and we expect a first-order phase transition. 
(The stability of the symmetric fixed point U* = w* = 0, $U* = 2 e / ( n 2 + n  - 2  + 8). is 
marginal for n = 2 in an order-€ calculation. However, a general result of Brezin et a1 
(1974), at order e', shows that it is unstable for more than 4 - 2 ~  real fields, and for 
n = 2 we have four real fields.) 

Finally, we mention the case H € 1014 G in which FH1 is dominant. Diagonalising 
the mass matrix and looking for soft modes in this case shows that there is only a single 
complex field relevant to the phase transition. The propagator is then an asymmetric 
scalar meson propagator of the type discussed by Chang and Stanley (1973) and Grover 
(1973). Since this type of asymmetry has no effect on the critical behaviour, the phase 
transition is second-order (with critical exponents characteristic of two real fields). As 
observed earlier, for H < 1014 G the magnetic field does not control the whole critical 
region, but only a secondary critical region close to T,. 
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